Vibrational and electronic dynamics of nitrogen--vacancy centres in diamond revealed by two-dimensional ultrafast spectroscopy

نویسندگان

  • V. M. Huxter
  • T. A. A. Oliver
چکیده

The optical and material properties of negatively charged nitrogen–vacancy (NV) centres in diamond make them attractive for applications ranging from quantum information to electromagnetic sensing. These properties are strongly dependent on the vibrational manifold associated with the centre, which determines phenomena associated with decoherence, relaxation and spin–orbit coupling. Despite its paramount importance in tuning these properties, the role of the vibrational bath and its effect on the electronic-state dynamics of NV centres in diamond is not fully understood. To elucidate the role of the bath, we present two-dimensional electronic spectroscopic studies of ensembles of negatively charged NV defect centres in diamond (NVD). We observe picosecond non-radiative relaxation within the phonon sideband and find that strongly coupled local modes dominate the vibrational bath. These findings provide a starting point for new insights into dephasing, spin addressing and relaxation in NVD with broad implications for magnetometry, quantum information, nanophotonics, sensing and ultrafast spectroscopy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vibrational and electronic ultrafast relaxation of the nitrogen-vacancy centers in diamond

Two dimensional electronic spectroscopy and transient grating measurements were performed, for the first time, on nitrogen-vacancy centers in diamond. These measurements reveal energy transfer and vibrational pathways with consequences for spin coherence.

متن کامل

Jahn-Teller-induced femtosecond electronic depolarization dynamics of the nitrogen-vacancy defect in diamond

Single-photon emission from the nitrogen-vacancy defect in diamond constitutes one of its many proposed applications. Owing to its doubly degenerate 3E electronic excited state, photons from this defect can be emitted by two optical transitions with perpendicular polarization. Previous measurements have indicated that orbital-selective photoexcitation does not, however, yield photoluminescence ...

متن کامل

Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond

The readout of negatively charged nitrogen-vacancy centre electron spins is essential for applications in quantum computation, metrology and sensing. Conventional readout protocols are based on the detection of photons emitted from nitrogen-vacancy centres, a process limited by the efficiency of photon collection. We report on an alternative principle for detecting the magnetic resonance of nit...

متن کامل

Detection of nanoscale electron spin resonance spectra demonstrated using nitrogen-vacancy centre probes in diamond

Electron spin resonance (ESR) describes a suite of techniques for characterizing electronic systems with applications in physics, chemistry, and biology. However, the requirement for large electron spin ensembles in conventional ESR techniques limits their spatial resolution. Here we present a method for measuring ESR spectra of nanoscale electronic environments by measuring the longitudinal re...

متن کامل

13C hyperfine interactions in the nitrogen-vacancy centre in diamond

The electronic spin associated with the nitrogen-vacancy (NV) centre in diamond interacts with an environment formed by isotopic impurities and paramagnetic defects; the strength of these interactions depends on the location of each impurity relative to the NV centre. From the electron spin resonance spectra of individual NV centres we infer the possible values and signs of hyperfine splittings...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013